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1. INTRODUCTION

Let D= {ZEC: Izi < I}, and suppose that ZI' Z2' ... , z" and lVI' IV2 , ... , IV"

are two collections of distinct points on aD arranged in counterclockwise
order. Let Zk = ei~k and W k = ei1h, where (XI < (X2 < ... < (X" < (XI + 2n and
PI < P2 < ... < P" < PI + 2n. We are interested in functions f which are
analytic and univalent in D and satisfy the boundary interpolation f(zd =
W k for k= I, 2, ... , n.

In particular we prove the following theorem.

THEOREM 1. There is a function f which is analytic and univalent in the
union of D and a neighborhood of {z I' Z2' ... , z,,} and continuous on [j such
that f(zk) = IVk for k = I, 2, ... , n. Furthermore, 1f(z)1 = I if Izi = I and Z is
sufficiently near any of the points Zk'

Theorem I is related to considerations in the recent paper [3], where the
following theorem about simultaneous peaking and interpolation is proved.

THOEREM A. (Clunie, Hallenbeck, and MacGregor). There is a
function f that is analytic and univalent in [j and satisfies I f(z)1 < 1 for
Izl~l andz=f.zk (k=I,2, ... ,n)andf(zk)=wkfork=1,2, ...,n.
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The proof of Theorem A is rather long and in several places non-con
structive. The main steps in the argument rely on the following ideas: a
peaking result for polynomials [1, p. 101]; an interpolation result for finite
Blaschke products [2]; a starlike mapping having suitable properties [3,
Lemma 1]; and an application of the Riemann mapping theorem for a
domain formed from a disk by adding "channels."

Theorem 1 can be used to give a somewhat simpler and more construc
tive proof of Therem A. The argument relies on the following reslt, which is
cntained in [3, Sect. 3] and is a weakened version of Theorem A. The
proof of this result is elementary and provides a step by step procedure for
obtaining the function from the given points. This function is a com
position of a finite number of functions which are power functions,
exponentials, or Mobius transformations. The argument for Theorem 1
also relies of properties of explicit functions which map D onto the com
plement of spirals.

THEOREM B. There is a function f that is analytic and univalent in Jj and
satisfies If(z)1 < 1 for Izi ~ 1 and Zi=Zk (k= 1, 2, ... , n) and If(zk)1 = 1 for
k = 1, 2, ..., n.

Our proof of Theorem A is as follows. Let g be a function given by
Theorem B and let (k = g(Zk) for k = 1, 2, ..., n. Let h be a function given by
Theorem 1 for the two collections of points, C, (2' ... , (n and WI' W 2 , ••• , Wn

Then f = hog satisfies Theorem A.
We also prove the following similar results.

THEOREM 2. Suppose a < XI < X 2< ... < X n < band YI <Y2 < ... <Yn

There is a real-valued polynomial p which is univalent in a domain containing
[a, b] such that p(xk ) =Yk for k = 1, 2, ..., n.

THEOREM 3. Let R = {( E C: Re ( > o} and let S be a subset of R such
that aSnoR={(I,(2,""("}' Given <;>0, there is a function f that is
analytic and univalent in a neighborhood of Su gl, (2' ... , (,,}, and con
tinuous in S such that f«(k)=(k for k=I,2, ...,n and f(S)cg:O<
Re«e}.

Stated briefly, Theorem 3 provides mappings which keep (k fixed while
"squashing" the set S toward the imaginary axis. We ask whether
Theorem 3 can be improved to include the conclusion f(S) c {(: m - e<
1m « M + e}, where m = mink 1m (k and M = maxk 1m (k' Such a result
may have implications when combined with Theorem 2 or similar facts.



FINITE BOUNDARY INTERPOLATION

2. PROOF OF THEOREM 1

317

The proof of Theorem 1 depends on the following construction of a map
of D onto a set consisting of D less a finite number of slits.

Suppose that m is an integer, m?: 2, and let (k = eii'k for k = 1, 2, '00' m,
where (I < (2 < ... < (m < (I + 2rr. Assume that (' = eiy', where (m-I < (' <
YI + 2rr. We will obtain a function h which in particular is analytic in D and
at (J,(2"",(m 1'(' such that h((d=(k for k=I,2,00.,m-l and
h((')=(m'

If (' = (m then the identity function serves for h. Otherwise, define (" by

if Y' >Ym
if y' <Ym'

(1)

This gives a point (" = e
iy

" so that on the counterclockwise arc on aD from
(m-I to (I' (m is between (' and C. For Izi < 1, let

1 m - I 1+ (z
p(z) =----=-1 L 1-/ 7 '

m i~ 1 SJ"-

and define a by la I < rr/2 and

1 m-I (Y_Y")
tan a = m _ 1 i~1 cot _.1-2- .

Also, let the function g be defined by the differential equation

zg'(z) . .
--= e'~[(cos a) p(z) + i sm aJ
g(z)

(2)

(3)

(4)

and the conditions g(O)=O and g'(O)= 1. Since Rep(z»O for Izl < 1 and
p(O) = 1, it follows from [5, p.52J that g is a-spiral-like. The function g
maps D one-to-one onto the plane slit along m - 1 Jordan arcs (spirals)
connected only at infinity.

Let C I , C2' .00' Cm _ I denote the circular arcs on aD which correspond to
the individual slits comprising iC\g(D). On each arc Cj there is a unique
point ~j mapping to the tip of the corresponding slit. Equations (2), (3),
and (4) imply that g' (e iY

") = 0, and therefore ~m I = ~".

Let O"j = g(~j) for j = 1, 2, 00" m - 1, and for t > 0 let G, denote the subset
of iC defined by w;6O"j exp[-ei~sJ for O<s<t and j=l, 2'00" m-l.
Properties of a-spiral-like functions imply that G, c g(D). Thus the function
g, defined by g ,(z) =g -- I [( exp( - ei~t)} g(z) J for t > 0 is analytic in D. Also
g, maps D one-to-one onto a subset of D formed by removing m - 1
Jordan slits joined to aD at the points ~ l' ~ 2, 00" ~ m _ I' Each point z with
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Izl=1 and z#C (j=1,2, ... , m-l) is mapped by {exp[-ei~t]}g onto
another (finite) point on the spiral containing g(z) or on the extension of
that spiral toward the origin. Therefore, g I(C) = Cfor j = 1, 2, ..., m - 1. The
function gl is continuous in t for each z in D, and if I z 1 ~ 1 and z # (j
(j=1,2, ..., m-l) then gt(z)--+O as t--+oo. This implies that gto((')=(m
for some to> 0. The function gto is analytic in D and is continuous in D.
Also, I g /o(z) I = 1 if 1z I = 1 and z is sufficiently near any of the points
C, (2' , (m I' C. The reflection principle implies that glo is analytic at
( I , (2' , (m . I' (' and the reflection also shows that g 10 is univalent in the
union of D and a neighborhood of {( I' (2' ... , (m- I' ('}.

This obtains h=gto' Geometrically stated, for each t, g/ fixes (I, (2' ... ,
(m- 1 as g/((') moves along aD (which monotone argument) until it reaches
(m for the value t = to' The slit at (" effectively pulls (' toward (m'

We now prove Theorem 1. Let Zl> Z2' ... , Zll and WI' W2, ..., WIl be as
described in the Introduction. If n = 1, the function / is obtained by a
rotation. For n = 2, first rotate D mapping Z I to WI' Let z~ be the image of
Z2 under this rotation. The constructon above with m = 2, (1 = WI' (2 = W 2 ,

and (' = z~ yields a function g such that the composition of the rotation
with' g gives a suitable function f

Suppose that the theorem holds for n = N. We will show that it holds for
n=N+1. Let ZI,2 2 , ... , 2 N+1 and WI' W2, ..., WN+I be the given sets of
points. There is a function / N satisfying the theorem for the sets of points
Z 1 , 2 2 , ... , 2 Nand WI' W2' ... , W N' In particular this provides a suitable
neighborhood A of {2 I' Z 2, ... , 2 N }. Also A contains a disk {Z :

12-ziV l <s}, for some 1::>0, which does not contain ZI>Z2, ,ZN_I,ZN+I
and such that Wk~/N[{Z: Iz-zNI <I:}] for 1~k~N+ 1 and k#N. Let
z~+I=ei~' be a point in {z:lz-ziVl<l::} with r:J. N< r:t.' <r:J. N+ I (where
zN=ei~.v and ZN+I =ei>N+l). Let W~+I =/N(z~+d.

The earlier argument gives a function h I which is analytic and univalent
in the union of D and a neighborhood of {WI' W 2 , ... , W N , w~+d such that
hl(Wk)=Wk for k=I,2, ... ,N and hl(W~+l)=WN+I' Since/N is analytic
and univalent in D u A, it also has these properties in DuB, where B is a
smaller neighborhood consisting of open disks centered at ZI' Z2' ,
Z N, z~ + I so that / N maps these disks into the neighborhood of {WI' W 2 , ,

W N , W~+I} above.
The earlier argument also gives a function h 2 which is analytic and

univalent in the union of D and a neighborhood of {z 1, Z 2' ... , Z N + I} such
that h2(Zk)=Zk for k= 1, 2, ... , N and h2(ZN+I)=Z~+1' Some smaller
neighborhood of {z I' Z 2' ... , Z N + I} is mapped by h2 into B.

The properties of hi and h2 imply that /=h l ofNoh2 satisfies the con
clusions of the theorem associated with the points ZI'Z2,,,,,ZN+1 and
l-t'1,W 2 ,···,W N + 1 o
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The proof of Theorem 2 depends on interpolation and approximation
reslts about polynomials and is set up by the following lemmas.

LEMMA 1. Suppose a<b, c<d, and O<I:«d-c)/(b-a). There is a
cubic polynomial f such that f(a)=c, f(b)=d, f'(a)=f'(b)=1: and
min {f' (x) : a :( x :( b }= 1:.

Proof A translation of variables implies that there is no loss of
generality to assume that a = c = O. Let t > I: and let g be the quadratic
polynomial such that g(O) = 1:, g(b/2) = t, and g(b) = 1:. Define f by f(x) =
J~ g(s) ds. Thenf(O) = 0,/'(0) = f'(b) = 1:, andf'(x) = g(x) ~ I: for 0:( x:( b.
Since Jg (g(s) - 1:) ds --> 0 as t --> 1:, it follows that f(b) --> I:b as t --> 1:. Also,
f( b) --> 00 as t -->'Xc. The condition 0 < I: < d/b and the continuity off assure
that there is a value of t for which f(b) = d.

LEMMA 2. Suppose a < XI < X2 < ... < Xn < band Yl <Y2 < ... <Yn
There is a function f defined and continuously differentiable on [a, b] such
thatf(xk)=Ykfor k=I,2, ...,n and min {f'(x): a:(x:(b}>O. (Here and
later, derivatives at end points are one-sided limits.)

Proof Choose Yo and Yn+ I such that Yo < Y I and Yn+ I > Yn and let
xo=a and xn+l=b. Choose I: such that O<I:<min{(Yk+I-Yk)/
(Xk+l-Xk): k=O,I, ... ,n}. Lemma I implies that there is a cubic
polynomial in each of the intervals [XbXk+lJ for k=O, l, ... ,n which
piecewise defines a functionf on [a, b] which is continuously differentiable.
Also, min{f'(x): a:(x:(b}=I:>O.

LEMMA 3. Suppose a<xl<x2 <···<xn<b and YI<Y2<"'<Yn
There is a polynomial p such that p(xd =Yk for k = I, 2, ..., nand
min{p'(x): a:(x:(b}>O.

Proof Let f satisfy Lemma 2 and let I: = min {f'(x): a:( x :( b }. Given
b > 0, then by [4, p. 113 J there is a polynomial q such that

and
max{ I f(x)- q(x)l: a:( x:( b} < b

max {I f' (x) - q'(x) I:a :( x :( b} < b.

(5)

(6)

Let r be the polynomial which interpolates the values f(xd - q(xd for
k = 1, 2, ..., n. Then r can be expressed

n

r(x) = L [f(xd - q(xdJ Pk(x),
k~l

(7)
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where Pk is the polynomial of degree at most n such that Pk(x;)=O for
j-=l-k and Pdxk)=1. Let Mk=max{IP~(x)l:a~x~b} and let
M = L:Z~ I M k· Equations (5) and (7) imply that r'(x) ~ -bM for
a~x~b.

The polynomial p = r + q satisfies p(xd = f(xk) = Yk for k = 1, 2, ..., n. If
a ~ x ~ b then (6) and the lower bound on r' imply p'(x) = r'(x) + q'(x) >
.f'(x)-(j-bM~e-b-bM. Therefore min{p'(x): a~x~b}>0 for
sufficient small b.

Remark. No claim is made in Lemma 3 about the degree of p. In
general, the Lagrange solution of the interpolation p(xd = Yk with the
conditions of Lemma 3 is not necessarily increasing on [Xl' xnJ. This
suggests the problem of determining whether there are upper bounds on
the degree of p which depend on n and/or the "spread" of the points Xb Yk'

Proof of Theorem 2. Let p be a polynomial given by Lemma 3. We will
show that there is a neighborhood (in the plane) of [a, b] in which p is
univalent. On the contrary, assume there is no such neighborhood. This
implies there are two sequences {zd and {z~} with Zk -=I- z~ and p(zd =
p(z~) for k = 1, 2, ... , and each sequence has an accumulation point in
[a, bJ. Consideration of subsequences implies that we may assume that
Zk --> X o and z~ --> x~ with X o and x~ in [a, b]. Thus p(xo) = p(x~), and since
p is strictly increasing on [a, b], this requires X o= x~. However, p'(xo) -=I- 0,
and therefore p is univalent in some neighborhood (in the plane) of X o'
This contradicts P(Zk)=P(Z~) for sufficiently large k.

4. PROOF OF THEOREM 3

We first note that Theorem 1 has an equivalent formulation for suitable
domains which are conformally equivalent to D. For R, this is obtained by
the introduction of a Mobius transformation and applies to two sets of n
complex numbers on {(: Re ( = O} in the same conformal order.

In the case S is unbounded, first consider a mapping (--> 1/(( - (') which
sends S to a bounded set Tin R any complex number (' with Re (' = 0 and
(' -=I- (k for k = 1, 2, ..., n. In particular, Tc {(: 0 < Re ( < M} for some M.
Let C = 1/((k - ('). Theorem 1 implies that for each p with 0 < p < 1 there
is a function gp which maps {(: 0 < Re ( < M} into itself and is analytic at
p(~. Also, gp(pG)=(~ for k=I,2, ...,n and gp(O)=O. The function gp
with pM < e satisfies the conditions on f in the theorem. In the case S is
bounded, the auxiliary mapping (f--+ 1/(( - (') is not needed.
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