Finite Boundary Interpolation by Univalent Functions

T. H. MACGREGOR

Department of Mathematics and Statistics, State University of New York, Albany, New York 12222, U.S.A.

AND

D. E. TEPPER

Department of Mathematics, Baruch College, City University of New York, New York, New York 10010, U.S.A.

Communicated by T. J. Rivlin

Received April 22, 1985; revised November 22, 1985

1. INTRODUCTION

Let $D = \{z \in \mathbb{C} : |z| < 1\}$, and suppose that $z_1, z_2, ..., z_n$ and $w_1, w_2, ..., w_n$ are two collections of distinct points on ∂D arranged in counterclockwise order. Let $z_k = e^{i\alpha_k}$ and $w_k = e^{i\beta_k}$, where $\alpha_1 < \alpha_2 < \cdots < \alpha_n < \alpha_1 + 2\pi$ and $\beta_1 < \beta_2 < \cdots < \beta_n < \beta_1 + 2\pi$. We are interested in functions f which are analytic and univalent in D and satisfy the boundary interpolation $f(z_k) = w_k$ for k = 1, 2, ..., n.

In particular we prove the following theorem.

THEOREM 1. There is a function f which is analytic and univalent in the union of D and a neighborhood of $\{z_1, z_2, ..., z_n\}$ and continuous on \overline{D} such that $f(z_k) = w_k$ for k = 1, 2, ..., n. Furthermore, |f(z)| = 1 if |z| = 1 and z is sufficiently near any of the points z_k .

Theorem 1 is related to considerations in the recent paper [3], where the following theorem about simultaneous peaking and interpolation is proved.

THOEREM A. (Clunie, Hallenbeck, and MacGregor). There is a function f that is analytic and univalent in \overline{D} and satisfies |f(z)| < 1 for $|z| \leq 1$ and $z \neq z_k$ (k = 1, 2, ..., n) and $f(z_k) = w_k$ for k = 1, 2, ..., n.

The proof of Theorem A is rather long and in several places non-constructive. The main steps in the argument rely on the following ideas: a peaking result for polynomials [1, p. 101]; an interpolation result for finite Blaschke products [2]; a starlike mapping having suitable properties [3, Lemma 1]; and an application of the Riemann mapping theorem for a domain formed from a disk by adding "channels."

Theorem 1 can be used to give a somewhat simpler and more constructive proof of Therem A. The argument relies on the following reslt, which is cntained in [3, Sect. 3] and is a weakened version of Theorem A. The proof of this result is elementary and provides a step by step procedure for obtaining the function from the given points. This function is a composition of a finite number of functions which are power functions, exponentials, or Möbius transformations. The argument for Theorem 1 also relies of properties of explicit functions which map D onto the complement of spirals.

THEOREM B. There is a function f that is analytic and univalent in \overline{D} and satisfies |f(z)| < 1 for $|z| \leq 1$ and $z \neq z_k$ (k = 1, 2, ..., n) and $|f(z_k)| = 1$ for k = 1, 2, ..., n.

Our proof of Theorem A is as follows. Let g be a function given by Theorem B and let $\zeta_k = g(z_k)$ for k = 1, 2, ..., n. Let h be a function given by Theorem 1 for the two collections of points, $\zeta_1, \zeta_2, ..., \zeta_n$ and $w_1, w_2, ..., w_n$. Then $f = h \circ g$ satisfies Theorem A.

We also prove the following similar results.

THEOREM 2. Suppose $a < x_1 < x_2 < \cdots < x_n < b$ and $y_1 < y_2 < \cdots < y_n$. There is a real-valued polynomial p which is univalent in a domain containing [a, b] such that $p(x_k) = y_k$ for k = 1, 2, ..., n.

THEOREM 3. Let $R = \{\zeta \in \mathbb{C} : \operatorname{Re} \zeta > 0\}$ and let S be a subset of R such that $\partial S \cap \partial R = \{\zeta_1, \zeta_2, ..., \zeta_n\}$. Given $\varepsilon > 0$, there is a function f that is analytic and univalent in a neighborhood of $S \cup \{\zeta_1, \zeta_2, ..., \zeta_n\}$, and continuous in \overline{S} such that $f(\zeta_k) = \zeta_k$ for k = 1, 2, ..., n and $f(S) \subset \{\zeta: 0 < \operatorname{Re} \zeta < \varepsilon\}$.

Stated briefly, Theorem 3 provides mappings which keep ζ_k fixed while "squashing" the set S toward the imaginary axis. We ask whether Theorem 3 can be improved to include the conclusion $f(S) \subset \{\zeta: m - \varepsilon < \text{Im } \zeta < M + \varepsilon\}$, where $m = \min_k \text{Im } \zeta_k$ and $M = \max_k \text{Im } \zeta_k$. Such a result may have implications when combined with Theorem 2 or similar facts.

2. PROOF OF THEOREM 1

The proof of Theorem 1 depends on the following construction of a map of D onto a set consisting of D less a finite number of slits.

Suppose that *m* is an integer, $m \ge 2$, and let $\zeta_k = e^{i\gamma_k}$ for k = 1, 2, ..., m, where $\gamma_1 < \gamma_2 < \cdots < \gamma_m < \gamma_1 + 2\pi$. Assume that $\zeta' = e^{i\gamma'}$, where $\gamma_{m-1} < \gamma' < \gamma_1 + 2\pi$. We will obtain a function *h* which in particular is analytic in *D* and at $\zeta_1, \zeta_2, ..., \zeta_{m-1}, \zeta'$ such that $h(\zeta_k) = \zeta_k$ for k = 1, 2, ..., m-1 and $h(\zeta') = \zeta_m$.

If $\zeta' = \zeta_m$ then the identity function serves for h. Otherwise, define γ'' by

$$\gamma'' = \begin{cases} \frac{1}{2}(\gamma_{m-1} + \gamma_m), & \text{if } \gamma' > \gamma_m \\ \frac{1}{2}(\gamma_m + \gamma_1 + 2\pi), & \text{if } \gamma' < \gamma_m. \end{cases}$$
(1)

This gives a point $\zeta'' = e^{i\gamma''}$ so that on the counterclockwise arc on ∂D from ζ_{m-1} to ζ_1 , ζ_m is between ζ' and ζ'' . For |z| < 1, let

$$p(z) = \frac{1}{m-1} \sum_{j=1}^{m-1} \frac{1+\bar{\zeta}_j z}{1-\bar{\zeta}_j z},$$
(2)

and define α by $|\alpha| < \pi/2$ and

$$\tan \alpha = \frac{1}{m-1} \sum_{j=1}^{m-1} \cot\left(\frac{\gamma_j - \gamma''}{2}\right). \tag{3}$$

Also, let the function g be defined by the differential equation

$$\frac{zg'(z)}{g(z)} = e^{i\alpha} [(\cos \alpha) p(z) + i \sin \alpha]$$
(4)

and the conditions g(0) = 0 and g'(0) = 1. Since Re p(z) > 0 for |z| < 1 and p(0) = 1, it follows from [5, p. 52] that g is α -spiral-like. The function g maps D one-to-one onto the plane slit along m-1 Jordan arcs (spirals) connected only at infinity.

Let $C_1, C_2, ..., C_{m-1}$ denote the circular arcs on ∂D which correspond to the individual slits comprising $\mathbb{C} \setminus g(D)$. On each arc C_j there is a unique point ξ_j mapping to the tip of the corresponding slit. Equations (2), (3), and (4) imply that $g'(e^{i\gamma^n}) = 0$, and therefore $\xi_{m-1} = \xi''$.

Let $\sigma_j = g(\xi_j)$ for j = 1, 2, ..., m-1, and for t > 0 let G_t denote the subset of \mathbb{C} defined by $w \neq \sigma_j \exp[-e^{i\alpha}s]$ for 0 < s < t and j = 1, 2, ..., m-1. Properties of α -spiral-like functions imply that $G_t \subset g(D)$. Thus the function g_t defined by $g_t(z) = g^{-1}[\{\exp(-e^{i\alpha}t)\}g(z)]$ for t > 0 is analytic in D. Also g_t maps D one-to-one onto a subset of D formed by removing m-1Jordan slits joined to ∂D at the points $\xi_1, \xi_2, ..., \xi_{m-1}$. Each point z with |z| = 1 and $z \neq \zeta_j$ (j = 1, 2, ..., m-1) is mapped by $\{\exp[-e^{i\alpha}t]\} g$ onto another (finite) point on the spiral containing g(z) or on the extension of that spiral toward the origin. Therefore, $g_t(\zeta_j) = \zeta_j$ for j = 1, 2, ..., m-1. The function g_t is continuous in t for each z in \overline{D} , and if $|z| \leq 1$ and $z \neq \zeta_j$ (j = 1, 2, ..., m-1) then $g_t(z) \to 0$ as $t \to \infty$. This implies that $g_{t_0}(\zeta') = \zeta_m$ for some $t_0 > 0$. The function g_{t_0} is analytic in D and is continuous in \overline{D} . Also, $|g_{t_0}(z)| = 1$ if |z| = 1 and z is sufficiently near any of the points $\zeta_1, \zeta_2, ..., \zeta_{m-1}, \zeta'$. The reflection principle implies that g_{t_0} is analytic at $\zeta_1, \zeta_2, ..., \zeta_{m-1}, \zeta'$ and the reflection also shows that g_{t_0} is univalent in the union of D and a neighborhood of $\{\zeta_1, \zeta_2, ..., \zeta_{m-1}, \zeta'\}$.

This obtains $h = g_{t_0}$. Geometrically stated, for each t, g_t fixes $\zeta_1, \zeta_2, ..., \zeta_{m-1}$ as $g_t(\zeta')$ moves along ∂D (which monotone argument) until it reaches ζ_m for the value $t = t_0$. The slit at ζ'' effectively pulls ζ' toward ζ_m .

We now prove Theorem 1. Let $z_1, z_2, ..., z_n$ and $w_1, w_2, ..., w_n$ be as described in the Introduction. If n = 1, the function f is obtained by a rotation. For n = 2, first rotate D mapping z_1 to w_1 . Let z'_2 be the image of z_2 under this rotation. The constructon above with m = 2, $\zeta_1 = w_1$, $\zeta_2 = w_2$, and $\zeta' = z'_2$ yields a function g such that the composition of the rotation with g gives a suitable function f.

Suppose that the theorem holds for n = N. We will show that it holds for n = N + 1. Let $z_1, z_2, ..., z_{N+1}$ and $w_1, w_2, ..., w_{N+1}$ be the given sets of points. There is a function f_N satisfying the theorem for the sets of points $z_1, z_2, ..., z_N$ and $w_1, w_2, ..., w_N$. In particular this provides a suitable neighborhood A of $\{z_1, z_2, ..., z_N\}$. Also A contains a disk $\{z: |z - z_N| < \varepsilon\}$, for some $\varepsilon > 0$, which does not contain $z_1, z_2, ..., z_{N-1}, z_{N+1}$ and such that $w_k \notin f_N[\{z: |z - z_N| < \varepsilon\}]$ for $1 \le k \le N + 1$ and $k \ne N$. Let $z'_{N+1} = e^{i\alpha}$ be a point in $\{z: |z - z_N| < \varepsilon\}$ with $\alpha_N < \alpha' < \alpha_{N+1}$ (where $z_N = e^{i\alpha_N}$ and $z_{N+1} = e^{i\alpha_{N+1}}$). Let $w'_{N+1} = f_N(z'_{N+1})$.

The earlier argument gives a function h_1 which is analytic and univalent in the union of D and a neighborhood of $\{w_1, w_2, ..., w_N, w'_{N+1}\}$ such that $h_1(w_k) = w_k$ for k = 1, 2, ..., N and $h_1(w'_{N+1}) = w_{N+1}$. Since f_N is analytic and univalent in $D \cup A$, it also has these properties in $D \cup B$, where B is a smaller neighborhood consisting of open disks centered at $z_1, z_2, ..., z_N, z'_{N+1}$ so that f_N maps these disks into the neighborhood of $\{w_1, w_2, ..., w_N, w'_{N+1}\}$ above.

The earlier argument also gives a function h_2 which is analytic and univalent in the union of D and a neighborhood of $\{z_1, z_2, ..., z_{N+1}\}$ such that $h_2(z_k) = z_k$ for k = 1, 2, ..., N and $h_2(z_{N+1}) = z'_{N+1}$. Some smaller neighborhood of $\{z_1, z_2, ..., z_{N+1}\}$ is mapped by h_2 into B.

The properties of h_1 and h_2 imply that $f = h_1 \circ f_N \circ h_2$ satisfies the conclusions of the theorem associated with the points $z_1, z_2, ..., z_{N+1}$ and $w_1, w_2, ..., w_{N+1}$.

3. PROOF OF THEOREM 2

The proof of Theorem 2 depends on interpolation and approximation reslts about polynomials and is set up by the following lemmas.

LEMMA 1. Suppose a < b, c < d, and $0 < \varepsilon < (d - c)/(b - a)$. There is a cubic polynomial f such that f(a) = c, f(b) = d, $f'(a) = f'(b) = \varepsilon$ and $\min \{f'(x) : a \le x \le b\} = \varepsilon$.

Proof. A translation of variables implies that there is no loss of generality to assume that a = c = 0. Let $t > \varepsilon$ and let g be the quadratic polynomial such that $g(0) = \varepsilon$, g(b/2) = t, and $g(b) = \varepsilon$. Define f by $f(x) = \int_0^x g(s) ds$. Then f(0) = 0, $f'(0) = f'(b) = \varepsilon$, and $f'(x) = g(x) \ge \varepsilon$ for $0 \le x \le b$. Since $\int_0^b (g(s) - \varepsilon) ds \to 0$ as $t \to \varepsilon$, it follows that $f(b) \to \varepsilon b$ as $t \to \varepsilon$. Also, $f(b) \to \infty$ as $t \to \infty$. The condition $0 < \varepsilon < d/b$ and the continuity of f assure that there is a value of t for which f(b) = d.

LEMMA 2. Suppose $a < x_1 < x_2 < \cdots < x_n < b$ and $y_1 < y_2 < \cdots < y_n$. There is a function f defined and continuously differentiable on [a, b] such that $f(x_k) = y_k$ for k = 1, 2, ..., n and $\min\{f'(x): a \le x \le b\} > 0$. (Here and later, derivatives at end points are one-sided limits.)

Proof. Choose y_0 and y_{n+1} such that $y_0 < y_1$ and $y_{n+1} > y_n$ and let $x_0 = a$ and $x_{n+1} = b$. Choose ε such that $0 < \varepsilon < \min\{(y_{k+1} - y_k)/(x_{k+1} - x_k): k = 0, 1, ..., n\}$. Lemma 1 implies that there is a cubic polynomial in each of the intervals $[x_k, x_{k+1}]$ for k = 0, 1, ..., n which piecewise defines a function f on [a, b] which is continuously differentiable. Also, $\min\{f'(x): a \le x \le b\} = \varepsilon > 0$.

LEMMA 3. Suppose $a < x_1 < x_2 < \cdots < x_n < b$ and $y_1 < y_2 < \cdots < y_n$. There is a polynomial p such that $p(x_k) = y_k$ for k = 1, 2, ..., n and $\min \{ p'(x) : a \leq x \leq b \} > 0$.

Proof. Let f satisfy Lemma 2 and let $\varepsilon = \min\{f'(x): a \le x \le b\}$. Given $\delta > 0$, then by [4, p. 113] there is a polynomial q such that

$$\max\{|f(x) - q(x)| : a \le x \le b\} < \delta$$
(5)

and

$$\max\left\{|f'(x) - q'(x)| : a \leq x \leq b\right\} < \delta.$$
(6)

Let r be the polynomial which interpolates the values $f(x_k) - q(x_k)$ for k = 1, 2, ..., n. Then r can be expressed

$$r(x) = \sum_{k=1}^{n} \left[f(x_k) - q(x_k) \right] P_k(x), \tag{7}$$

where P_k is the polynomial of degree at most *n* such that $P_k(x_j) = 0$ for $j \neq k$ and $P_k(x_k) = 1$. Let $M_k = \max\{|P'_k(x)| : a \leq x \leq b\}$ and let $M = \sum_{k=1}^n M_k$. Equations (5) and (7) imply that $r'(x) \geq -\delta M$ for $a \leq x \leq b$.

The polynomial p = r + q satisfies $p(x_k) = f(x_k) = y_k$ for k = 1, 2, ..., n. If $a \le x \le b$ then (6) and the lower bound on r' imply $p'(x) = r'(x) + q'(x) > f'(x) - \delta - \delta M \ge \varepsilon - \delta - \delta M$. Therefore $\min\{p'(x): a \le x \le b\} > 0$ for sufficient small δ .

Remark. No claim is made in Lemma 3 about the degree of p. In general, the Lagrange solution of the interpolation $p(x_k) = y_k$ with the conditions of Lemma 3 is not necessarily increasing on $[x_1, x_n]$. This suggests the problem of determining whether there are upper bounds on the degree of p which depend on n and/or the "spread" of the points x_k, y_k .

Proof of Theorem 2. Let p be a polynomial given by Lemma 3. We will show that there is a neighborhood (in the plane) of [a, b] in which p is univalent. On the contrary, assume there is no such neighborhood. This implies there are two sequences $\{z_k\}$ and $\{z'_k\}$ with $z_k \neq z'_k$ and $p(z_k) = p(z'_k)$ for k = 1, 2, ..., and each sequence has an accumulation point in [a, b]. Consideration of subsequences implies that we may assume that $z_k \rightarrow x_0$ and $z'_k \rightarrow x'_0$ with x_0 and x'_0 in [a, b]. Thus $p(x_0) = p(x'_0)$, and since p is strictly increasing on [a, b], this requires $x_0 = x'_0$. However, $p'(x_0) \neq 0$, and therefore p is univalent in some neighborhood (in the plane) of x_0 . This contradicts $p(z_k) = p(z'_k)$ for sufficiently large k.

4. PROOF OF THEOREM 3

We first note that Theorem 1 has an equivalent formulation for suitable domains which are conformally equivalent to D. For R, this is obtained by the introduction of a Möbius transformation and applies to two sets of n complex numbers on $\{\zeta : \text{Re } \zeta = 0\}$ in the same conformal order.

In the case S is unbounded, first consider a mapping $\zeta \to 1/(\zeta - \zeta')$ which sends S to a bounded set T in R any complex number ζ' with Re $\zeta' = 0$ and $\zeta' \neq \zeta_k$ for k = 1, 2, ..., n. In particular, $T \subset \{\zeta: 0 < \text{Re } \zeta < M\}$ for some M. Let $\zeta'_k = 1/(\zeta_k - \zeta')$. Theorem 1 implies that for each ρ with $0 < \rho < 1$ there is a function g_ρ which maps $\{\zeta: 0 < \text{Re } \zeta < M\}$ into itself and is analytic at $\rho\zeta'_k$. Also, $g_\rho(\rho\zeta'_k) = \zeta'_k$ for k = 1, 2, ..., n and $g_\rho(0) = 0$. The function g_ρ with $\rho M < \varepsilon$ satisfies the conditions on f in the theorem. In the case S is bounded, the auxiliary mapping $\zeta \mapsto 1/(\zeta - \zeta')$ is not needed.

References

- 1. L. BRICKMAN, T. H. MACGREGOR, AND D. R. WILKEN, CONVEX hulls of some classical families of univalent functions, *Trans. Amer. Math. Soc.* 156 (1971), 91-107.
- 2. D. G. CANTOR AND R. R. PHELPS, An elementary interpolation theorem, *Proc. Amer. Math. Soc.* 16 (1965), 523-525.
- 3. J. G. CLUNIE, D. J. HALLENBECK, AND T. H. MACGREGOR, A peaking and interpolation problem for univalent functions, J. Math. Anal. Appl. 111 (1985), 559-570.
- 4. P. J. DAVIS, "Interpolation and Approximation," Ginn (Blaisdell), Waltham, MA, 1963.
- 5. P. L. DUREN, "Univalent Functions," Springer-Verlag, New York, 1983.